15-180 kVA

Overview

- High Power AC and DC Power Source
 Programmable AC and DC power for frequency conversion and product test applications
- Expandable Power Levels
 Available output power of 15, 22.5, 30, and 45 kVA per unit and multi-unit configurations for power requirements up to 180 kVA
- Single and Three Phase Mode
 Phase mode programming on MX22.5-3Pi, MX30-3Pi and MX45-3Pi allows switching between single and three phase output modes
- Arbitrary & Harmonic Waveform Generation
 User defined voltage waveform and distortion programming
- Regenerative, bidirectional "Green" Power Solution

Automatic crossover between Source and Sink power mode offers regenerative capabilities in AC mode. Regenerate up to 100% of the rated output power back to the utility grid during sink mode operation. (-SNK option)

Remote Control
 Standard IEEE-488 (GPIB), RS232C & USB along with optional LAN Interfaces are available for automated test applications

Introduction

The MX Series consists of multiple high-power AC and DC power systems that provide controlled AC and DC output for ATE and product test applications. This high-power AC and DC test system covers a wide spectrum of AC and DC power applications at an affordable cost. Using state-of-the-art PWM switching techniques, the MX series combines compactness, robustness and functionality in a compact floor-standing chassis, no larger than a typical office copying machine. This higher power density has been accomplished without the need to resort to elaborate cooling schemes or additional installation wiring. Simply roll the MX unit to its designated location (using included casters), plug it in, and the MX series is ready to work for you.

Simple Operation

The MX Series can be operated completely from its menu driven front panel controller. A backlit LCD display shows menus, setup data, and readback measurements. IEEE-488, RS232C, USB and LAN remote control interfaces and instrument drivers for popular ATE programming environments are available. This allows the MX Series to be easily integrated into an automated test system.

For advanced test applications, the programmable controller version offers full arbitrary waveform generation, time and frequency domain measurements, and voltage and current waveform capture.

Configurations

The MX15 delivers up to 15 kVA of single-phase output. The MX22.5, MX30 and MX45 deliver up to 22.5 kVA, 30 kVA and 45 kVA, respectively. These operate using single or three phase output in AC or AC+DC mode. In DC mode, 66.6% of the AC power level is available.

For higher power requirements, the MX60, MX90, MX135, and MX180 multi cabinet models are available. Multi cabinet MX45 systems always operate in three phase output mode. Available reconfigurable MX60, MX90, MX135, and MX180 models (-MB designation) provide multiple controllers which allow separation of the high-power system into two, three, or four individual MX45 units for use in separate applications. This ability to reconfigure the system provides an even greater level of flexibility not commonly found in power systems.

Product Evaluation and Test

Increasingly, manufacturers of high-power equipment and appliances are required to fully evaluate and test their products over a wide range of input line conditions.

Output voltage options, such as the -333 option, allow testing of high voltage 480VAC L-L products at 120% of nominal as required by IEEE 1547 (Table 1) "Interconnection system response to abnormal voltages".

The built-in output transient generation and read-back measurement capability of the MX Series offers the convenience of a powerful, and easy to use, integrated test system.

150-400 V

0-400A/ Phase

≋	208	230	380
	400	480	600

ETHERNET —USB GPTE R\$232

MX Series II

Regenerative, bidirectional "Green" Power Solution

The MX Series features the ability to both source and sink current, i.e., bi-directional current flow. The MX amplifier is designed to reverse the phase relationship between the AC input voltage and current to feed power back onto the utility grid. This mode of operation is particularly useful when testing grid-tied products that feed energy back onto the grid. Static Power Converters such as grid-tied and off-grid photovoltaic inverters are tested for frequency variations and voltage transients.

REGENERATE CONTROL UNDER VOLT= 100.0VAC			
UNDER VOLT= 100.0VAC	dFREQ = 0.50Hz		
OVER VOLT = 270.0VAC	DELAY F= 5.000S		
	DELAY R= 5.000S		

Programming sink (-SNK) mode operation

With an output frequency range to 819 Hz (or 905 Hz with -HF option), the MX Series is well suited for aerospace applications. Precise frequency control and accurate load regulation are key requirements in these applications. The available IEEE-488 remote control interface and SCPI command language provide for easy integration into existing ATE systems. The MX Series eliminates the need for several additional pieces of test equipment, saving cost and space. Instrument drivers for popular programming environments such as National Instruments LabView™ are available to speed up system integration.

Regulatory Testing

As governments are moving to enforce product quality standards, regulatory compliance testing is becoming a requirement for a growing number of manufacturers. The MX Series is designed to meet AC source requirements for use in compliance testing such as IEC 61000, 3-2, 3-3, 3-11, 3-12, to name a few.

Choice of Voltage Ranges

The RS Series includes 0 - 150V & 0 - 300V or optionally, 0 - 166V & 0 - 333V line to neutral. These models provide a maximum 3 phase output capability of 260 Vac & 520 Vac or 287 & 576V line to line respectively. For applications requiring more than 333 V L-N (or 576 V L-L), the optional -HV output transformer provides an additional 0 - 400 V L-N and 0 - 693 V L-L output range for use in AC mode only. For custom applications the XV

option is available and is user defined and offers up to 600VL-N (1,038VL-L)

High Crest Factor

With support for high crest factor loads, the BPS Series AC source can drive difficult nonlinear loads with ease. Since many modern products use switching power supplies, they tend to pull high repetitive peak currents. The BPS30 with a crest factor rating of 4.5 for example, can deliver up to 300 Amps of repetitive peak current (150 V AC range) per phase to handle three phase loads. Refer to the specifications for peak repetitive currents for each model.

Remote Control

Standard RS232C & USB IEEE-488, and USB along with optional LAN remote control interfaces allow programming of all instrument functions from an external computer. The popular SCPI command protocol is used for programming.

Hardware In the Loop

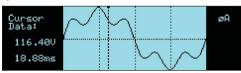
Optional External Drive (-EXTD) allows external analog signal control of the source while in AC operation, essentially turning the source into a high bandwidth amplifier. Most common applications include hardware in the loop (HIL) simulation of power plants, hybrid electric vehicles and most recently renewable energy generation and their effect on the utility grid. Reference EXTD white paper for additional performance details by visiting our website.

Application Software

- Windows® application software (*) is included. This software provides easy access to the power source's capabilities without the need to develop any custom code. The following functions are available through this GUI program:
 - * Requires PC running Windows™ 7, 8.x, or 10
- Steady state output control (all parameters)
- Create, run, save, reload and print transient programs
- Generate and save harmonic waveforms.
- Generate and save arbitrary waveforms.
- Measure and log standard measurements
- Capture and display output voltage and current waveforms.
- Measure, display, print and log harmonic voltage and current measurements.
- Display IEEE-488, RS232C, USB and LAN bus traffic to and from the AC Source to help you develop your own test programs.

MX Series II 15–180 kVA

WindowsTM application software.


Harmonic Waveform Generation

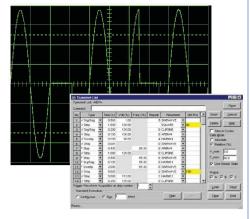
Using the latest DSP technology, the MX Series programmable controller can generate harmonic waveforms to test for harmonics susceptibility. The Windows Graphical User Interface program can be used to define harmonic waveforms by specifying amplitude and phase for up to 50 harmonics. The waveform data points are generated and downloaded by the GUI to the AC source through the IEEE-488 or RS232C bus. Up to 200 waveforms can be stored in nonvolatile memory and given a user defined name for easy recall.

All MX-MX22.5/30/45-3Pi Series configurations offer three phase waveform generation, allowing independent phase anomalies to be programmed. It also allows simulation of unbalanced harmonic line conditions.

Arbitrary Waveform Generation

Using the provided GUI program or custom software, the user also can define arbitrary AC waveforms. The arbitrary waveform method of data entry provides an alternative method of specifying AC anomalies by providing specific waveform data points. The GUI program provides a catalog of custom waveforms and allows real-world waveforms captured on a digital oscilloscope to be downloaded to one of the many AC source's waveform memories. Arbitrary waveform capability is a flexible way of simulating the effect of real-world AC power line conditions on a unit under test in both engineering and production environments.

Harmonically distorted waveform.


MX Series - AC and DC Transient Generation

The MX Series controller has a powerful AC and DC transient generation system that allows complex sequences of voltage, frequency and waveshapes to be generated. This further enhances the MX's capability to simulate AC line conditions or DC disturbances. When combined with the multiphase arbitrary waveform capabilities, the AC and DC output possibilities are truly exceptional. Transient generation is controlled independently yet time synchronized on all three phases. Accurate phase angle control and synchronized transient list execution provide unparalleled accuracy in positioning AC output events.

The front panel provides a convenient listing of the programmed transient sequence and allows for transient execution Start, Stop, Abort and Resume operations. User defined transient sequences can be saved to nonvolatile memory for instant recall and execution later. The included Graphical User Interface program supports transient definitions using a spreadsheet-like data entry grid. A library of frequently used transient programs can be created on disk using this GUI program

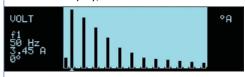
Transient List Data Entry from the front panel.

Transient List Data Entry in GUI program.

3

MX Series II

MX Series - Measurement and Analysis

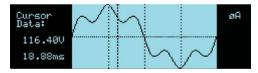

The MX Series is much more than a programmable AC, DC or AC+DC power source. It also incorporates an advanced digital signal processor-based data acquisition system that continuously monitors all AC source and load parameters. This data acquisition system forms the basis for all measurement and analysis functions. These functions are accessible from the front panel and the remote-control interface for the MX Series (MX15 excluded; uses 2-line display).

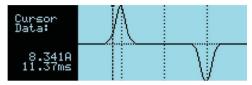
Conventional Measurements [All controllers]

Common AC and DC measurement parameters are automatically provided by the data acquisition system. These values are displayed in numeric form on the front panel LCD display. The following measurements are available: Frequency, Vrms, Irms, Ipk, Crest Factor, Real Power (Watts), Apparent Power (VA) and Power Factor.

Harmonic Analysis

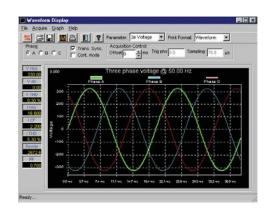
The MX Series provides detailed amplitude and phase information on up to 50 harmonics of the fundamental voltage and current (up to 16 kHz in three phase mode) for either one or three phases. Harmonic content can be displayed in both tabular and graphical formats on the front panel LCD for immediate feedback to the operator (excluding MX15). Alternatively, the included GUI program can be used to display,


Absolute amplitude bar graph display of current harmonics with cursor positioned at the fundamental (MX30/45 Display).


Voltage harmonic measurement table display in absolute values (MX22.5/30/45 Display)

print and save harmonic measurement data. Total harmonic distortion of both voltage and current is calculated from the harmonic data.

The measurement system is based on realtime digitization of the voltage and current waveforms using a 4K deep sample buffer. This time domain information provides detailed information on both voltage and current waveshapes. Waveform acquisitions can be triggered at a specific phase angle or from a transient program to allow precise positioning of the captured waveform with respect to the AC source output.


Acquired Current waveform (MX22.5/30/45 Display).

Acquired Voltage waveform (MX22.5/30/45 Display).

MX Series II 15-180kVA

Model

Refer to table shown for model numbers and configurations

Supplied with

Standard: User Manual on CD ROM.

Pi version: User/Programming Manual and Software on CD ROM. RS232C serial cable.

Input Voltage Settings

Specify input voltage (L-L) setting for each MX system at time of order:

208	Configured for 208 V \pm 10 % L-L, 4 wire input.
230	Configured for 230 V $\pm 10~\%$ L-L, 4 wire input.
380	Configured for 380V +/- 10% L-L, 4 Wire Input (not avail on MX15)
400	Configured for 400 V $\pm 10\%$ L-L, 4 wire input.
480	Configured for 480 V $\pm 10~\%$ L-L, 4 wire input
600	Configured for 600 V V ±10 % L-L. 4

Standard Model Options

Specify output range on standard models. All range values shown are Line to Neutral.

wire input (not avail on MX15)

-150	Configured for 150 V AC and 200 V DC
	output ranges.

- -300 Configured for 300 V AC and 400 V DC output ranges.
- -P IEEE-488 & RS232C Interface Adds programming, Windows & RS232 Cable.
- -R Range change. Provides 150/200 & 300/400 AC/DC output ranges. (Std. MX15)

Pi Model Options

-333	Configured for 166VAC and 333V AC L-N and 220/440 V DC output ranges
-ES	Emergency Shut Off with Key Release
-411	IEC 1000-4-11 test firmware.
-413	IEC 1000-4-13 Harmonics & Interharmonics test firmware.
-LF	Limits maximum frequency to 500 Hz.
-FC	Modifies output frequency control to ± 0.25%
-LAN	Ethernet Interface.
-HF	Increases max frequency to 905 Hz.
-HV	Adds 400 V L-N AC-only output range.
-HVC	Adds 0-400VAC L-N AC only output range with constant power mode.
-XV	Adds other AC-only output range. Consult factory for details.
-XVC	Adds other AC only output range with constant power mode. Consult Factory for details
-HF	Increases max. frequency to 905 Hz.
-LKM	Clock/Lock Master
-LKS	Clock/Lock Auxiliary
-WHM	Watt-Hour Measurement option.
-SNK	Bidirectional auto source and sink mode. Offers up to 100% power sink capability in AC mode of operation.
-SNK-DC	Sink DC current mode.
-EXTD	External Drive allows external signal control. (Not available on MX15)
Avionics	Test Routine Options *
-ABD	ABD0100.1.8 Test Option.

-ABD	ABD0100.1.8 Test Option.
-AMD	Airbus AMD24 Test
-A350	Airbus Test Software
-B787	Boeing 787 Test Software
-160	RTCA/DO-160D, DO-160E, DO-160G, and EUROCAE test firmware.
-704	MIL-STD-704 A - F test - firmware/software.
-1399	MIL-STD-1399-300B shipboard power test software.

^{*} Note: Reference the Avionics Test User Manual P/N 4994-971 for a complete listing of performance capabilities.

Packaging and Shipment

All MX systems are packaged in re-usable protective wooden crates for shipment.

MX Series II Specifications

ACInput	1													
Voltage		ied at time of order. Cand 600VAC not ava	All inputs are L-L, 3ø, ilable on MXI 5	3 wire + Gnd. 2	208 ± 10% VAC, 230	± 10% VAC, 380V ±	= 10% VAC, 400 ± 1	10% VAC, 480 ± 10	%VAC. 600V± 10%	%VAC				
Input Line	Current Per Cabinet (MX15) Current Per Cabinet (MX22.5/30/45):													
Current (per	208	230	400	480	208	230	380	400	480	600				
ohase) Steady State at full bower load	58.3 ARMS	52.3 ARMS	30ARMS	28 ARMS	89/116/175 ARMS	79/105/157 ARMS	49/62/95 ARMS	46/60/90 ARMS	38/50/75 ARMS	30/40/60 ARMS				
Distortion	<8%at full po	wer, <20% below 359	%of power											
ine Frequency	47 - 63 Hz													
Efficiency	85 %typical													
Power Factor	0.95 typical													
ACService														
Inputs/Outputs			access, cables routed	d through rear p	oanel, exit in back. N	/XI5: Rear Access								
Regulatory	IBC/EN61010-1													
EMI	GSPR 11 / EN 55011, Class A, EN 61326-1, ŒEMC (400 and 480 models)													
Connectors	ACInput & Output terminal block behind front cover. Rear Panel Connections: IEEE-488 (CPIB) connector Option, 9 pin Sub-DRS232C connector*, Remote voltage sense terminal block, System Interface Connector, DB-37, Ethernet connector Option. *RS232 DB9 to DB9 cable supplied,													
Physical Dimens	sions / Environm		i, BB 37, Emerilet ee	инестог ортюн	. 10232 DD) 101	b) caoic supplied,								
MX22.5/30/45 1			nm), Width: 28.75" (7:	31 mm), Depth:	34.5" (876 mm)									
/X22.5/30/45			s. / 522 Kg, Shipping:			Net: 63 lbs. / 29 Kg	, MX22.5: 875 lbs.	/ 398 Kg						
MXI 5 Dimensio	ns I	Height: 31.75" (806 m	nm), Width: 24.0" (610	0 mm), Depth: 2	28.0" (711 mm)	<u> </u>		<u> </u>						
MXI5 Weight	(hassis: Net: 600 lbs.	/ 272 Kg, Shipping: 0	581 lbs. / 309 K	g, Amp Module: Net	: 63 lbs. / 29 Kg								
hassis	1	MX22.5, MX30, and M	X45 Individual cabine	ets: Casters and	forklift openings. N	/XI 5: Casters								
Vibration and S	nock I	Designed to meet NST	Aproject 1Atranspo	rtation levels. U	Inits are shipped in	wooden crate with	forklift slots							
Air Intake/Exha	ust 1	forced air cooling, fro	nt air intake, rear exl	naust										
Operating Hum	dity (to 95 %RAH, non-co	ondensing											
Temperature			30° max in CP mode)	, Storage: -20 to	+85°C									
Programmable	controller version	s with dual voltage r	anges											
							e Ranges							
Model	ACOutp Power		AC/AC+DC	DC	-HVOpt	333 Opt AC/AC+D	-333 (Int	DC	Controller					
/XI5-1Pi	15kV/	-	150/300	200/400	400VAC	166/333		0	Programmab	le				
/X22.5-3Pi	22.5 kV		150/300	200/400	400VAC	166/333		0	Programmab					
/X30-3Pi	30 kV	1 & 3	150/300	200/400	400VAC	166/333	220 / 44	0	Programmab					
√X45-3Pi	45 kV	A 1&3	150/300	200/400	400VAC	166/333	220 / 44	0	Programmab	le				
√X90-3Pi	90 kV	3	150/300	200/400	400VAC	166/333	220 / 44	0	Programmab	le				
MX135-3Pi	135 kV	A 3	150/300	200/400	400VAC	166/333	220 / 44	0	Programmab	le				
MX180-3Pi	180kV	A 3	150/300	200/400	400VAC	166/333	220 / 44	0	Programmab	le				
Pi m	odels include IE	E-488, RS232C & US	Binterfaces, Advance	ed measuremen	ts, arbitrary wavefor	m generation. Pha	se mode switching	on MX-22.5 3Pi, N	1X-30-3PI and MX4	5-3Pi.				
MB Option														
Model	ACOutput F	ower Phase Outputs	Controll	er										
MX90-3Pi-MB	90 kVA		Dual MX45	-3Pi										
MXI35-3Pi-MB	135 kV		Triple MX4:											
MX180-3Pi-MB	180kV	3	Quad MX45	. an:										

Steady state ACRMS Cu	Steady state ACRMS Current in Regeneration mode (-SNK option)													
Model	Std/Option	MXI5-1Pi	MX22.5-3Pi	MX30-3Pi	MX45-3Pi	MX60-3Pi	MX90-3Pi	MX135-3Pi	MXI 80-3Pi					
150VRange, 3 Phase	Standard	NΑ	50AØ	66.6AØ	100AØ	133.3AØ	200AØ	300AØ	400AØ					
150VRange, 1 Phase	Standard	100A	150A	200A	300A	N/A	N/A	NΑ	NΑ					
300VRange, 3 Phase	Standard	NΑ	25AØ	33.3AØ	50A Ø	66.6AØ	100AØ	150AØ	200AØ					
300VRange, 1 Phase	Standard	50A	75A	100A	150A	N/A	N/A	NA	N/A					
166VRange, 3 Phase	-333 Option	NΑ	45A Ø	60A/Ø	90.1A/ Ø	120A Ø	180.2A Ø	270.3A Ø	360.3A/ Ø					
166VRange, 1 Phase	-333 Option	90.1A	135A	180.1A	270.3A	NΑ	N/A	NΑ	NΑ					
333VRange, 3 Phase	-333 Option	NΑ	22.5AØ	30A/Ø	45A Ø	60A Ø	90.1A Ø	135A Ø	180.2A					
333VPange 1 Phase	333 Ontion	45 A	67.5A	90.1Δ	135Δ	N/ A	N/ A	NI/ A	N/ A					

MX Series II Specifications

Operating Modes	: M. J. J. AC.	les											
Pi Models: AC, DC and AC+DC, Non P ACMode Output	1 Models ALC	oniy											
Frequency				ı: 16.00-500.0 Hz, -HF 0 - 81.91 Hz, 0.1 Hz: 8				ply above					
Phase Outputs	MX15-1/1	5-1Pi: 1, M	1×22.5/30/45-	3Pi: 1 or 3 switchable	e, Neutral: Floating	g, Coupling: DC (excep	ot for -HV option	n)					
Total Power	MX15-1/1	Pi: 15 kVA,	, MX22.5-1/3:	22.5 kVA, MX30-1/3:	30 kVA, MX45-1/3	: 45 kVA, MX60: 60kV	VAMX90: 90 kV	'A, MXI35: 135 k	VA, MX180: 180	kVA			
Load Power Factor	0 to unity	at full outp	put current										
ACMode Voltage													
Voltage Ranges	Range	,	VLow	VHigh			I	Regulation					
(Std Unit has 150 and 300VAC,	AC	0-150	0 / 0-166V	0-300 / 0-333 V	Lo	oad Regulation < 0.25	%FS DCto 100) Hz, < 0.5 %FS	100 Hz to 819 H	z			
333 Option has 166 and 333VAC)	AC+DC	0-15	0 /0-166V	0-300/0-333V	Li	ne Regulation < 0.1%	6FS for a 10 %l	ine change					
External Sense	Voltage di	op comper	nsation (5%Fu	ull Scale)									
Harmonic Distortion (Linear)	Less than	ess than 0.5% from 16 - 66 Hz; Less than 1% from 66 - 500 Hz; Less than 1.5% above 500 Hz											
DCOffset	<20 mV	20 mV											
Load Regulation	0.25%FS	0.25%FS @DC-100 Hz, 0.5%FS>100 Hz											
External Amplitude Modulation	Depth: 0 -	10 %, Free	quency: DC-2	KHz									
Voltage slewrate	200 μs for	10%to 90)%of full-scale	e change into resistiv	e load, 0.5V/ μSec								
ACMode Current													
	Mod	del	MXI5	MX22.5	MX30	MX45	MX60	MX90	MX135	MXI 80			
	1,10		1 Ph	3Ph / 1 Ph	3Ph / 1 Ph	3 Ph / 1 Ph	3 Ph	3 Ph	3 Ph	3 Ph			
Steady State AC Current @FS V	VLow	150	100	50/ø/ 150	66.6/ø/ 200	100/ø/ 300	133.2/ø	200/ø	300/ø	400/ø			
(Std Unit has 150 and 300VAC		166	90.1	45/ ø/135	60/ ø/180.1	90.1/ø/ 27.3	120/ø	180.2/ø	270.3/ø	360.3/ø			
-333 Option has 166 and 333VAC)	VHigh	300 330	50 45	25/ø/75 22.5/ø/67.5	33.3/ø/ 100 30/ø/ 90.1	50/ø/ 150 45/ø/ 135	66.6/ø 60/ø	100/ø 90.1/ø	150/ø 135/ø	200/ø 180.2/ø			
	Note: Constant power mode provides increased current at reduced voltage. See chart below												
Peak Repetitive ACCurrent	MX30 and	MX30 and MX60 up to 4.5 / other MX models up to 3.0.(xrms current at full scale voltage)											
Programming Accuracy	Voltage (r.		Vrms, Freque	ncy: ± 0.01 % of progr	rammed value, Cur	rrent Limit: - 0 %to +	5 %of program	med value + 1A,	Phase: <0.5°+0.	2%100Hz with			
Programming Resolution			nV Fraguency	:0.01 Hz from 16 - 81	01 Hz 0.1 Hz from	n 82.0 810 Hz Gurre	ant Limit: 0.1A	3 nhasa mada 1	OA 1 phase mor	de Phase 0.10			
Constant Power ACMode - Available			irv, rrequericy	.0.01 12 Hom 10 - 01	.91112, 0.1112 11011	1102.0 - 017 12, curre	ли шин. 0.173	5 phase mode, 1.	or ; i phase mo	ac, i nasc. 0.1			
		125%-											
	Curre	ent											
	(RM	s) 100%						1					
	1												
	'	50%					Full						
		T				Power							
		20%											
		²⁰ 7											
			10%		50%	80%		00%					
Chassis Dimensions						> Volt	age (RMS)						
Chassis Dimensions													
			31.75"		28	3.75" 30.25mm] →							
			[806.45mm]		T		G	∃ I↑					
								∄ │					
	Contract of the				· •			.]]					
		1		MINO I	1.								
							أأأ أالا اللا	48.125"					
								[1222.4mm]					
	0 0			r			鹼						
		28.0	0" 1.20mml	· · ·		.		.					
		[411	1.20	24.00" [609.80mm]	91	<u> </u>	•	4					
								↓ 1.95" [49.53mm]					
				Front View	ı Rea	r View	Front View						
	Rear Vie	ew .			1								
	Rear Vie							X45 Single Chass					

MX Series II Specifications

Measurement															
					RMS			Crest	Real	Apparent	Power		DC	DC	DC
	Parameter		Volta	ge	Current	Curre	ent	Factor	Power	Power	Factor		Voltage	Current	Power
	Range	16-100 Hz 100-820 Hz	400	V	0-160 A	0-400	0 A	0.00-6.00	kW	0-15 kVA	0.00- 1.00	0.0- 360.0	0-400 V	0-400 A	0- 10kW
Measurements -					0.15 A+				30 W+	30 VA+				AS 35 MM 31 S MM 31 S MM 31 S MM 32 MM 35 MM 31	
Standard (AC	Accuracy*												0.5 V	0.5 A	30W
Measurements)	(±)	Hz	0.1V+0	0.02%		Current									
Í		0.04.77 / 0.4			0.02%	0.02	2%		0.1%	0.1%				MXI 35	
	* Hz 10 mV 10 mA 10 mA 0.01 10 W 10 VA 0.01 0.1° 10 mV											10 W			
		The Section Soldings Chiracut Stator Provent Provent		e for											
	Parameter	-	' Phase		Voltag	ge	C	Jurrent							
	D			0.0 -	Fundame	ental	Fun	damental							
	Range	32.00 Hz -	16 kHz	360.0°	Harmonics	2-50	Harm	nonics 2-50							
Measurements -	A * (1)	0.03%+0.0	3 Hz/	204	750 mV 0.39	%+750	0.5 A/ 0).3%+ 150 ı	mA						
Harmonics	Accuracy* (±)	0.01 H	ĺz	2° typ.	mV+0.3%/	1 kHz	+0.3	3%/1 kHz							
	Resolution	0.01 F	z	0.5°	10 mV/ 1	0 mV	100 m	nA/ 100 mA	A						
	* Accuracy specifications are valid above 100 counts. Accuracy specifications are for three phase mode. Harmonics frequency range for MX30/45-3Pi in single phase														
	modeis32Hz				,	•		•			. ,	Ü		0 1	
DCMode Output															
Power	•		_	_				•	outputs. 15	kWin 1 chann	el mode, M	IX30-3Pi:(6.5kWper ou	itput, 3 outp	outs.
Voltage Ranges				F	F , & F)							
Output Accuracy	± 1 Vdc	, , , , , , , , , , , , , , , , , , ,													
Load Regulation	< 0.25 %FS														
Line Regulation	< 0.1%FS or	10 %-line change													
Ripple	< 2 Vrms Lo	Vrms Lo Range, < 3 Vrms Hi Range													
Max DC Current			MX15	M	s / 1Phs 3Phs /		30		MX45	MX60]	MX90	MX135	N	I X180
@FSVper	IVIDO	iel	1 Ph	3Phs	/ 1Phs	3Phs /	1Phs	3Ph	ns / 1Phs	3Phs		3Phs	3Phs	3	BPhs
output. (Std	X/T	200	50	25	75	33.3 /	100	5	0 / 150	66.6		100	150		200
Unit has 200	VLow	220	45.4	22.7	/ 68.2	30.3/	90.1	45.4	4 / 136.3	60.6		90.9	136.3	1	81.8
and 400VDC, -	X/III. 1.	400	25	12.5	7 37.5	37.5 16.6		2	25 / 75	33.2		50	75		50
333 Option has	v High	440)	22.7	11.3	35 / 34			22	.7 / 68.2	30.2		45.4	68.1	9	90.9
220 and	Note: Consta	nt nover mode nr	ovidec incre	acad curra	nt at reduced v	oltaga Sac	chart on	previous pe	ngo.						
440VDC)	VHigh 400 25 440) 12.5 / 37.5 16.6 / 50 25 / 75 33.2 50 75 50 Note: Constant power mode provides increased current at reduced voltage. See chart on previous page														
Current Limit		ole from 0 Ato ma	x. current for	selected	range										
AC+DCMbde Outp	1		AG: DG	1 .	DG 1										
Output Power	Maximum cu	irrent and power i	n AC+DC mo	de is same	as DCmode										
Over Load			oltage mode	e											
Over	Automatic sh	nutdown													
Non Volatile	16 instrumer	nt setups, 200 use	r defined wa	veforms [I	Pi onlyl										
Mem. Storage		1 ,			71										
Waveforms															
Waveform Types	Std: Sine, Pi:	Sine, Square, Clip	ped sine, Us	er defined											
User defined	Four groups	of 50 user defined	arbitrary w	aveforms o	of 1024 points f	for a total of	of 200. On	e group car	be active a	t a time.					
waveform	5Po				· r			6r .w.							
System Interface															
Inputs			-	k											
Outputs	Function Str	obe / Trigger out,	Clock/Lock												
Remote Control IEEE.488 Interface	IEEE-488 (G	PIB) talker listener	: Subset: AH	H1, CO, DC	, DT1, L3, PP0,	RL2, SH1,	SR1, T6, I	EEE-488.2 S	SCPI Syntax						
RS232C	9 pin Sub-D	connector (Supplie	ed with RS23	2Ccable)											
LAN (-LAN Opt.)	Ethernet Inte	erface: 10BaseT, 1	00BaseT, RJ	45											
USB		31.1; Speed: 460 I													
Output Relay	Push button	controlled or bus-	controlled or	utput rela	у										
Output impedance (Not available with - SNKOption)	Programmat	ole Zavailable on I	/1X30-3Pi and	d MX45-3I	Pi in 3 phase mo	ode only. S	pecificatio	ons apply at	50 Hz fund	amental. Resis	stive: 1 - 20	0 mOhm, I	nductive: 17	0 - 200 uH	

Note: Specifications are subject to change without notice. Specifications are warranted over an ambient temperature range of 25°±5° C Unless otherwise noted, specifications are per phase for a sinewave with a resistive load and apply after a 30 minute warm-up period. For three phase configurations, all specifications are for L-N. Phase angle specifications are valid under balanced load conditions only.

© 2021 AMETEK Programmable Power All rights reserved. AMETEK Programmable Power is the trademark of AMETEK Inc., registered in the U.S. and other countries. Elgar, Sorensen, and California Instruments, are trademarks of AMETEK Inc., registered in the U.S.

绿测科技有限公司

广州总部:广州市番禺区陈边村金欧大道83号江潮创意园A栋208室

深圳分公司:深圳市龙华区龙华街道油松社区东环一路1号耀丰通工业园1-2栋2栋607南宁分公司:广西自由贸易试验区南宁片区五象大道401号五象航洋城1号楼3519号

广州分公司:广州市南沙区凤凰大道89号中国铁建·凤凰广场B栋1201房

电话: 020-2204 2442 传真: 020-8067 2851

邮箱: Sales@greentest.com.cn 官网: www.greentest.com.cn

微信视频号

绿测科技订阅号

绿测工场服务号